Generalized *-derivations in Prime*-rings

¹Dr.D.Bharathi and ²P.V Rama Krishna

Abstract— In this paper it is proved that a prime*-ring R admits a generalized reverse*-derivation F associated with non-zero*-derivation d, then either [d(x),z] = 0 or F is reverse*-centralizer. Next it is aimed to prove that a Prime*-Ring R admits a generalized*-left derivation F with associated *-left derivation d then either R is commutative or F is Right *-multiplier.

Index Terms— prime*-ring, Jordan *-derivation, Generalized*-derivation, ,Generalized reverse*-derivation.

1 INTRODUCTION

The study of Derivations in rings through initiated long back,but got impetus only after posner.E.C [1] who in 1957 established two very striking results on derivations in prime rings.The study of *-rings using generalized derivations has become an innovative research topic during the last few decades leading to many excellent results and questions.

Shakir Ali [2] have defined the notions of generalized*-derivations &generalized reverse*-derivations and proved some theorems involving these mapping.Here it is presented some results on prime*-rings admits generalized*derivations. An additive mapping $x \rightarrow x^*$ on a ring R is called an involution if it satisfies following axioms 1) $(x+y)^*=y^*+x^*$ 2) $(xy)^* = y^*x^*$ 3) $(x^*)^* = x \quad \forall x, y \in \mathbb{R}$. A prime*-ring is defined as $xa^*y = 0$ implies either x = 0 or y = 0. An additive mapping d:R \rightarrow R is called a reverse *-derivation if d(xy) = d(y)x*+ vd(x) holds $\forall x, y \in \mathbb{R}$. An additive mapping $F:\mathbb{R} \to \mathbb{R}$ is called a generalized reverse *-derivation if $F(xy) = F(y)x^*+$ yd(x) holds $\forall x, y \in \mathbb{R}$. An additive mapping F:R \rightarrow R is called a generalized *-left derivation if $F(xy) = y^*F(x) + xd(y)$ holds $\forall x, y \in \mathbb{R}$. An additive mapping F:R \rightarrow R is called a generalized jordan *- derivation associated with if $F(x^2) =$ F(x)x + xd(x) for all $x \in R$.

2 THEOREMS AND PROOFS

Theorem 1: Let R be a prime *-ring.If R admits a generalized reverse *-derivation F with an associated non-zero reverse *- derivation then either [d(x),z] = 0 or F is reverse *- centralizer. **Proof:** We are given that F is a generalized reverse *- derivation with an associated non-zero reverse *-derivation with an associated non-zero reverse *-derivation d, we have $F(xy) = F(y)x^*+yd(x)$.

(1)

Replace x by xz in equation(1) $F(xzy) = F(y)z^*x^*+y(d(z)x^*+zd(x)).$ On the other hand $F(xzy) = F(x(zy)) = F(zy)x^*+zyd(x) = F(y)z^*x^*+yd(z)x^*+zyd(x)$ (2) Substracting (2) from (1) we get [y,z]d(x) = 0.

Replace y by d(x)z we get

 $\begin{aligned} [d(x)z,z]d(x) &= 0. \\ &= d(x)[z,z]d(x) + [d(x),z] \ zd(x) = 0. \\ &= [d(x),z] \ zd(x) = 0. \end{aligned}$

Since R is prime we get either [d(x),z] = 0 or $d(x) = 0 \forall x \in R$. Case1:_ if d=0 then F is left *-revese centralizer or $[d(x),z] = 0 \forall x,z \in R$

(3)

Theorem2:_Let R be a prime*-ring. If R admits a generalized *left derivation associated with *-left derivation then either R is commutative or F is right *-multiplier.

Proof: By the definition of generalized*-left derivation $F(xy) = y^*F(x)+xd(y)\forall x,y \in \mathbb{R}$

Replace y by yz then F(xyz) = F(x(yz)) = (yz)*F(x)+xd(yz). = $z^*y^*F(x)+x(z^*d(y)+yd(z))$. = $z^*y^*F(x)+xz^*d(y)+xyd(z)$

(4)

On the other hand

 $F(xyz) = F(xy(z)) = z^*F(xy) + xyd(z)$

 $= z^*y^*F(x)+z^*xd(y)+ xyd(z)$

(5)

Substracting (5) from (4) we get

 $xz^*d(y)-z^*xd(y) = 0 = [x,z^*]d(y) = 0.$

Replace $z^* \rightarrow z$ we get [x,z]d(y) = 0. (6)

Now again replace x by xz in (6) we get

[xz,z]d(y) = 0=x[z,z]+[x,z]zd(y) = 0.

[x,z] z d(y) = 0.

Since R is prime either [x,z] = 0 or d(y) = 0.

We conclude that either R is commutative (or) F is right *- multiplier.

Lemma 1. Let R be a 2-torsion free non-commutative prime *ring and Let $F:R\rightarrow R$ is called a generalized jordan *- derivation which satisfies $f(h)h+hd(h)\in Z(R)$ then [f(hg+gh),y]=[f(h)g+hd(g),y]+[f(g)h+gd(h),y].

Proof. For any $r \in \mathbb{R}$

$$F(h^2) = F(h)h+hd(h) \in Z(R)$$
(1.1)

¹Assoicate professor, Department of mathematics, Sri venkateswara University, Tirupati-517502, Andhra Pradesh,India. <u>Bharathikavali@yahoo.co.in</u> 2 Research Scholar, Department of mathematics, Sri venkateswara University, Tirupati-517502, Andhra Pradesh,India. <u>Bharathikavali@yahoo.co.in</u>

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 ISSN 2229-5518

 $F((h+g)^{2}) = F(h+g)(h+g) + (h+g)d(h+g)$ $=F(h)+F(g)(h+g)^{+}(h+g)(d(h)+d(g))$ = F(h)h+ F(h)g+ F(g) h+F(g)gh $d(h)+hd(g)+gd(h)+gd(g) \forall h \in H(R)$ (1.2)Multiplying (1.2) by y on left side we get $y F((h+g)^{2}) = y (F(h)h+h d(h)) + y (F(h)g+hd(g)) + y (F(g))$ h+gd(h)) +(1.3)y (F(g)g ⁺(gd(g))∈Z(R) \forall h∈H(R) Multiplying (1.2) by y on right side we get $F((h+g)^{2}) y = (F(h)h+h d(h)) y+(F(h)g+hd(g)) y+(F(g)h+$ gd(h)) y+ (F(g)g + (gd(g)) y $\forall h \in H(R)$ (1.4)Comparing (1.3) and (1.4) we get $[F((h+g)^{2}),y] = [F(h^{2}),y] + [F(g^{2}),y] + [F(h)g+hd(g),y]$ +]+[F(g) h + g d(h), y]Using (1.1) we get [F(hg+gh),y] = [F(h)g+hd(g), y] +]+[F(g)h+gd(h), y]

Lemma 2. Let R be a 2-torsion free non-commutative prime*ring and d:R \rightarrow R be Jordan *-derivation which satisfies d(h)h+hd(h) \in Z(R) then [d(hg+gh,y] = [d(h)g+d(g)h+hd(g)+gd(h),y] Proof. d(h²) = d(h)h+hd(h) \in Z(R) \forall h \in H(R) (2.1) Replace h by h+g in (2.1) d((h+g) ²) =d(h+g) (h+g) + (h+g) d(h+g) =(d(h)+d(g)) (h+g) + (h+g) (d(h)+d(g)) = d(h)h+ d(h)g+d(g) h+d(g)g +h $= d(h^{2})+d(g^{2})+d(h)g+d(g) h+hd(g)+gd(h) \in Z(R)$ $\Rightarrow [d(h^{2})+d(g^{2})+d(h)g+d(g) h+hd(g)+gd(h),y] = 0$

∀h∈H(R)

= $[d(h^2) + d(g^2), y] + [d(h)g + d(g) h, y] + [hd(g)+gd(h), y] = 0$

 $[d(h^{2+} g^2+hg+gh),y] = [d(h)g+d(g)h+hd(g)+gd(h),y] (by 2.1)$ [d(hg+gh),y] = [d(h)g+d(g)h+hd(g)+gd(h),y]

3 ACKNOWLEDGEMENT

The author would like to thank Dr.D.Bharathi for her support, encouragement, help throughout this work.

4 REFERENCES

[1] E. C. Posner, "Derivations in prime rings." *Proceedings of the American Mathematical Society* 8.6 1093-1100. (1957).

- [2] A.Shakir, " On generalized *-derivations in *rings", Palestine Journal of Mathematics.vol1,32-37,2012.
- [3] M.Bresar, J.Vukman, "On left derivations and relative mapping"." *Proceedings of the American Mathematical Socie ty* .10,7-16,1990.

5 CONCLUSION

Hence a prime*-ring R admits a generalized reverse*derivation F with associated non-zero reverse*-derivation d then either F is reverse*-centralizer or commutator of d(x) and z equal to zero.If F is generalize *-left derivation then either F is Right*-multiplier or R is commutative.