Generalized *-derivations in Prime*-rings

${ }^{1}$ Dr.D.Bharathi and ${ }^{2}$ P.V Rama Krishna

Abstract

In this paper it is proved that a prime*-ring R admits a generalized reverse*-derivation F associated with non-zero*-derivation d, then either $[d(x), z]=0$ or F is reverse*-centralizer. Next it is aimed to prove that a Prime*-Ring R admits a generalized*-left derivation F with associated *-left derivation d then either R is commutative or F is Right *-multiplier.

Index Terms- prime*-ring,Jordan *-derivation, Generalized*-derivation, ,Generalized reverse*-derivation.

1 Introduction

The study of Derivations in rings through initiated long back,but got impetus only after posner.E.C [1] who in 1957 established two very striking results on derivations in prime rings. The study of *-rings using generalized derivations has become an innovative research topic during the last few decades leading to many excellent results and questions.

Shakir Ali [2] have defined the notions of general-ized*-derivations \&generalized reverse*-derivations and proved some theorems involving these mapping.Here it is presented some results on prime*-rings admits generalized*derivations. An additive mapping $x \rightarrow x^{*}$ on a ring R is called an involution if it satisfies following axioms 1) $(x+y)^{*}=y^{*}+x^{*}$ 2) $\left.(x y)^{*}=y^{*} x^{*} 3\right)\left(x^{*}\right)^{*}=x \quad \forall x, y \in R$. A prime*-ring is defined as $\mathrm{xa}^{*} \mathrm{y}=0$ implies either $\mathrm{x}=0$ or $\mathrm{y}=0$. An additive mapping $\mathrm{d}: \mathrm{R} \rightarrow \mathrm{R}$ is called a reverse *-derivation if $\mathrm{d}(\mathrm{xy})=\mathrm{d}(\mathrm{y}) \mathrm{x}^{*}+$ $y d(x)$ holds $\forall x, y \in R$. An additive mapping $F: R \rightarrow R$ is called a generalized reverse *-derivation if $F(x y)=F(y) x^{*}+$ $y d(x)$ holds $\forall x, y \in R$. An additive mapping $F: R \rightarrow R$ is called a generalized ${ }^{*}$-left derivation if $F(x y)=y^{*} F(x)+x d(y)$ holds $\forall x, y \in R$. An additive mapping $F: R \rightarrow R$ is called a generalized jordan *- derivation associated with if $F\left(x^{2}\right)=$ $F(x) x *+x d(x)$ for all $x \in R$.

2 Theorems and Proofs

Theorem 1: Let R be a prime *-ring.If R admits a generalized reverse ${ }^{*}$-derivation F with an associated non-zero reverse *derivation then either $[\mathrm{d}(\mathrm{x}), \mathrm{z}]=0$ or F is reverse ${ }^{*}$ - centralizer.
Proof: We are given that F is a generalized reverse *derivation with an associated non-zero reverse ${ }^{*}$-derivation with an associated non-zero reverse *-derivation d,
we have $F(x y)=F(y) x^{*}+y d(x)$.

Replace x by $x z$ in equation(1)
$F(x z y)=F(y) z^{*} x^{*}+y\left(d(z) x^{*}+z d(x)\right.$.
On the other hand
$F(x z y)=F(x(z y))=F(z y) x^{*}+z y d(x)=F(y) z^{*} x^{*}+y d(z) x^{*}+z y d(x)$
(2)

1Assoicate professor, Department of mathematics, Sri venkateswara University, Tirupati-517502, Andhra Pradesh,India. Bharathikavali@yahoo.co.in 2 Research Scholar, Department of mathematics, Sri venkateswara University, Tirupati-517502, Andhra Pradesh,India. Bharathikavali@yahoo.co.in

Substracting (2) from (1) we get
$[y, z] d(x)=0$.

Replace y by d(x)z we get

$$
\begin{aligned}
{[\mathrm{d}(\mathrm{x}) \mathrm{z}, \mathrm{z}] \mathrm{d}(\mathrm{x}) } & =0 . \\
& =\mathrm{d}(\mathrm{x})[\mathrm{z}, \mathrm{z}] \mathrm{d}(\mathrm{x})+[\mathrm{d}(\mathrm{x}), \mathrm{z}] \mathrm{zd}(\mathrm{x})=0 . \\
& =[\mathrm{d}(\mathrm{x}), \mathrm{z}] \mathrm{zd}(\mathrm{x})=0 .
\end{aligned}
$$

Since R is prime we get either $[d(x), z]=0$ or $d(x)=0 \forall x \in R$.
Case1: if $d=0$ then F is left *-revese centralizer or $[d(x), z]=0$
$\forall x, z \in R$

Theorem2:_ Let R be a prime*-ring. If R admits a generalized *left derivation associated with *-left derivation then either R is commutative or F is right *-multiplier.
Proof: By the definition of generalized*-left derivation $\mathrm{F}(\mathrm{xy})=$ $y^{*} F(x)+x d(y) \forall x, y \in R$
Replace y by yz then $F(x y z)=F(x(y z))=(y z)^{*} F(x)+x d(y z)$.

$$
\begin{aligned}
& =z^{*} y^{*} F(x)+x\left(z^{*} d(y)+y d(z) .\right. \\
& =\quad z^{*} y^{*} F(x)+\quad x z^{*} d(y)+x y d(z)
\end{aligned}
$$

(4)

On the other hand
$F(x y z)=F(x y(z))=z^{*} F(x y)+x y d(z)$
(5)

$$
=\quad z^{*} y^{*} F(x)+z^{*} x d(y)+\quad x y d(z)
$$

Substracting (5) from (4) we get
$x z^{*} d(y)-z^{*} x d(y)=0=\left[x, z^{*}\right] d(y)=0$.
Replace $\quad \mathrm{z}^{*} \rightarrow \mathrm{z}$ we get $[\mathrm{x}, \mathrm{z}] \mathrm{d}(\mathrm{y})=0$.
(6)

Now again replace x by $x z$ in (6) we get
$[x z, z] d(y)=0=x[z, z]+[x, z] z d(y)=0$.
$[x, z] z d(y)=0$.
Since R is prime either $[x, z]=0$ or $d(y)=0$.
We conclude that either R is commutative (or) F is right *multiplier.

Lemma 1. Let R be a 2-torsion free non-commutative prime *ring and Let $\mathrm{F}: \mathrm{R} \rightarrow \mathrm{R}$ is called a generalized jordan *- derivation which satisfies $f(h) h+h d(h) \in Z(R)$ then $[f(h g+g h), y]$ $=[f(\mathrm{~h}) \mathrm{g}+\mathrm{hd}(\mathrm{g}), \mathrm{y}]+[\mathrm{f}(\mathrm{g}) \mathrm{h}+\mathrm{gd}(\mathrm{h}), \mathrm{y}]$.
Proof. For any $r \in R$
$\mathrm{F}\left(\mathrm{h}^{2} \quad\right) \quad=\quad \mathrm{F}(\mathrm{h}) \mathrm{h}+\mathrm{hd}(\mathrm{h}) \quad \in \mathrm{Z}(\mathrm{R})$
(1.1)

ISSN 2229-5518

$\mathrm{F}\left((\mathrm{h}+\mathrm{g})^{2}\right)=\mathrm{F}(\mathrm{h}+\mathrm{g})(\mathrm{h}+\mathrm{g})+(\mathrm{h}+\mathrm{g}) \mathrm{d}(\mathrm{h}+\mathrm{g})$

$$
=\mathrm{d}\left(\mathrm{~h}^{2}\right)+\mathrm{d}\left(\mathrm{~g}^{2}\right)+\mathrm{d}(\mathrm{~h}) \mathrm{g}+\mathrm{d}(\mathrm{~g}) \mathrm{h}+\mathrm{hd}(\mathrm{~g})+\mathrm{gd}(\mathrm{~h}) \in \mathrm{Z}(\mathrm{R})
$$

$$
=\mathrm{F}(\mathrm{~h})+\mathrm{F}(\mathrm{~g})(\mathrm{h}+\mathrm{g})+(\mathrm{h}+\mathrm{g})(\mathrm{d}(\mathrm{~h})+\mathrm{d}(\mathrm{~g}))
$$

$\Rightarrow\left[\mathrm{d}\left(\mathrm{h}^{2}\right)+\mathrm{d}\left(\mathrm{g}^{2}\right)+\mathrm{d}(\mathrm{h}) \mathrm{g}+\mathrm{d}(\mathrm{g}) \mathrm{h}+\mathrm{hd}(\mathrm{g})+\mathrm{gd}(\mathrm{h}), \mathrm{y}\right]=0$

$$
=F(h) h+F(h) g+F(g) \quad h+F(g) g
$$

$\mathrm{d}(\mathrm{h})+\mathrm{hd}(\mathrm{g})+\mathrm{gd}(\mathrm{h})+\mathrm{gd}(\mathrm{g}) \forall \mathrm{h} \in \mathrm{H}(\mathrm{R})$
(1.2)

Multiplying (1.2) by y on left side we get
$\left.y \mathrm{~F}(\mathrm{~h}+\mathrm{g})^{2}\right)=\mathrm{y}(\mathrm{F}(\mathrm{h}) \mathrm{h}+\mathrm{h} \mathrm{d}(\mathrm{h}))+\mathrm{y}(\mathrm{F}(\mathrm{h}) \mathrm{g}+\mathrm{hd}(\mathrm{g}))+\mathrm{y}(\mathrm{F}(\mathrm{g})$ $h+g d(h))+$
y $\left(\mathrm{F}(\mathrm{g}) \mathrm{g}{ }^{+}(\mathrm{gd}(\mathrm{g})) \in \mathrm{Z}(\mathrm{R}) \forall \mathrm{h} \in \mathrm{H}(\mathrm{R})\right.$
Multiplying (1.2) by y on right side we get
$F\left((h+g)^{2}\right) y=(F(h) h+h d(h)) y+(F(h) g+h d(g)) y+(F(g) h+$ $\operatorname{gd}(\mathrm{h})) \mathrm{y}+(\mathrm{F}(\mathrm{g}) \mathrm{g}+(\mathrm{gd}(\mathrm{g})) \mathrm{y} \forall \mathrm{h} \in \mathrm{H}(\mathrm{R})$
Comparing (1.3) and (1.4) we get
$\left[\mathrm{F}\left((\mathrm{h}+\mathrm{g})^{2}\right), \mathrm{y}\right]=\left[\mathrm{F}\left(\mathrm{h}^{2}\right), \mathrm{y}\right]+\left[\mathrm{F}\left(\mathrm{g}^{2}\right), \mathrm{y}\right]+[\mathrm{F}(\mathrm{h}) \mathrm{g}+\mathrm{hd}(\mathrm{g}), \mathrm{y}]$ $+]+[F(g) h+g d(h), y]$
Using (1.1) we get
$[F(h g+g h), y]=[F(h) g+h d(g), y]+]+[F(g) h+g d(h), y]$
Lemma 2. Let R be a 2-torsion free non-commutative prime*ring and $d: R \rightarrow R$ be Jordan *-derivation which satisfies $\mathrm{d}(\mathrm{h}) \mathrm{h}+\mathrm{hd}(\mathrm{h}) \quad \in \mathrm{Z}(\mathrm{R})$ then $[\mathrm{d}(\mathrm{hg}+\mathrm{gh}, \mathrm{y}] \quad=$ $[d(h) g+d(g) h+h d(g)+g d(h), y]$
Proof. $\mathrm{d}\left(\mathrm{h}^{2}\right)=\mathrm{d}(\mathrm{h}) \mathrm{h}+\mathrm{hd}(\mathrm{h}) \in \mathrm{Z}(\mathrm{R}) \quad \forall \mathrm{h} \in \mathrm{H}(\mathrm{R})$

(2.1)

Replace h by $\mathrm{h}+\mathrm{g}$ in (2.1)

$$
\begin{aligned}
\mathrm{d}\left((\mathrm{~h}+\mathrm{g})^{2}\right) & =\mathrm{d}(\mathrm{~h}+\mathrm{g})(\mathrm{h}+\mathrm{g})+(\mathrm{h}+\mathrm{g}) \mathrm{d}(\mathrm{~h}+\mathrm{g}) \\
& =(\mathrm{d}(\mathrm{~h})+\mathrm{d}(\mathrm{~g}))(\mathrm{h}+\mathrm{g})+(\mathrm{h}+\mathrm{g})(\mathrm{d}(\mathrm{~h})+\mathrm{d}(\mathrm{~g})) \\
& =\mathrm{d}(\mathrm{~h}) \mathrm{h}+\mathrm{d}(\mathrm{~h}) \mathrm{g}+\mathrm{d}(\mathrm{~g}) \mathrm{h}+\mathrm{d}(\mathrm{~g}) \mathrm{g}+\mathrm{h}
\end{aligned}
$$

